|
In differential geometry, Catalan's minimal surface is a minimal surface originally studied by Eugène Charles Catalan in 1855.〔Catalan, E. "Mémoire sur les surfaces dont les rayons de courbures en chaque point, sont égaux et les signes contraires." Comptes Rendus Acad. Sci. Paris 41, 1019–1023, 1855.〕 It has the special property of being the minimal surface that contains a cycloid as a geodesic. It is also swept out by a family of parabolae.〔Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny, Minimal Surfaces, Volume 1. Springer 2010〕 The surface has parametric equation:〔Gray, A. "Catalan's Minimal Surface." Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 692–693, 1997〕 : == External links == * Weisstein, Eric W. "Catalan's Surface." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/CatalansSurface.html * Weiqing Gu, The Library of Surfaces. http://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/catalan.html 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Catalan's minimal surface」の詳細全文を読む スポンサード リンク
|